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Abstract. Diversity plays critical roles in ecosystem functioning, but it remains unclear how best to 

model phytoplankton diversity in order to better understand those roles and reproduce consistently 

observed patterns in the ocean. In contrast to the typical approach of resolving distinct species or 

functional groups, we present a ContInuous TRAiT-basEd phytoplankton model (CITRATE) that 

focuses on macroscopic properties such as total biomass, mean trait values, and trait variance. This 5 

phytoplankton component is embedded within a Nitrogen-Phytoplankton-Zooplankton-Detritus-Iron 

model that itself is coupled with a simplified one-dimensional ocean model. Size is used as the master 

trait for phytoplankton. CITRATE also incorporates “trait diffusion” for sustaining diversity, as well as 

simple representations of physiological acclimation, i.e. flexible chlorophyll-to-carbon and nitrogen-to-

carbon ratios. We implemented CITRATE 1.0 at two contrasting stations in the Northwest Pacific 10 

where several years of observational data are available. The model is driven by physics forcing 

including vertical eddy diffusivity imported from three-dimensional ocean circulation models. One 

common set of model parameters for the two stations was optimized using the Delayed Rejection 

Adaptive Metropolis-Hasting Monte Carlo (DRAM) algorithm. The model faithfully reproduced most 

of the observational patterns and gave robust predictions on phytoplankton mean size and size diversity. 15 

With proper physical forcing, CITRATE 1.0 can be applied to any oceanic station where either nitrogen 

or iron limits phytoplankton growth.     
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1 Introduction 

Both species identity and diversity play critical roles in ecosystem functioning (Tilman et al., 

1997, 2014). Phytoplankton are a polyphyletic group of oxygenic organisms that account for nearly half 

of the global primary production (Fields et al., 1998) and also play indispensable roles in other 

biogeochemical cycles in the Earth system (Falkowski, 2012). They have astonishingly high diversity, 5 

with several thousand species already documented and many remaining to be explored (Sournia et al., 

1991; Moon-van der Staay et al., 2001). Their sizes range from less than one micron for the 

cyanobacteria such as Prochlorococcus (Chisolmn et al., 1988) to more than 1 mm for some giant 

diatoms  (Villareal, 1993). Furthermore, physiology differs substantially even within the same genera or 

species (Strzepek and Harrison, 2004; Johnson et al., 2006; Palenik et al., 2006; Kooistra et al., 2008). 10 

Although various ocean models have been developed by accounting for various functional groups 

or categories of phytoplankton (e.g., Le Quéré et al., 2005; Hashioka et al., 2013), the finite number of 

such distinct types included limits their ability to resolve the vast diversity of trait values. Some 

pioneering studies have considered greater numbers of species, each of which has a particular set of 

multivariate trait axes that constitute a hyper-volume niche space (Follows et al., 2007; Barton et al., 15 

2010; Follows and Dutkiewicz, 2011; Matsuda et al., 2016). “Functional traits” are the key to linking 

phytoplankton diversity, environmental conditions, and ecosystem functioning. Important 

phytoplankton traits include maximal growth rate, the light absorption and nutrient uptake affinities, 

optimal growth temperature, and edibility (i.e., susceptibility to grazing), etc (Litchman et al., 2007; 

Litchman and Klausmeier, 2008; Edwards et al., 2011, 2012, 2015; Merico et al., 2009; Thomas et al., 20 

2012; Chen, 2015). The total species pool in these modelling studies should ideally cover the entire 

multi-dimensional trait space of all possible species, which is practically impossible. Although that 

approach has effectively generated large-scale patterns of plankton diversity, such models generally 

underestimate local diversity, for two reasons: 1) lack of appropriate mechanisms for sustaining 

diversity, and 2) insufficient resolution of the trait space so that fitness differences between species are 25 

too large to allow coexistence (i.e. insufficient equalizing effect; Chesson, 2000). In any case, a 

substantial proportion of the idealized species so modelled cannot survive under realistic oceanic 

conditions, and therefore the models do not capture the functions associated with many species. 
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Continuous trait-based models have been developed to address the above questions (Wirtz and 

Eckhardt, 1996; Norberg et al., 2001; Merico et al., 2009, 2014; Terseleer et al., 2014; Acevedo-Trejos 

et al., 2016; Smith et al. 2016). Instead of modeling the dynamics of individual species, continuous trait-

based models or so-called “adaptive dynamics” models focus on macroscopic or aggregate properties of 

a community such as total biomass, average trait, and trait variance by assuming that phytoplankton 5 

traits follow some distribution (usually Gaussian). These models do not have the problem of inadequate 

trait resolution, because they have infinitesimally fine trait resolution. The trait variance, treated as a 

tracer in the model, serves as a measure of trait diversity. Thus, the continuous trait-based model has the 

advantage that the factors controlling diversity can be directly quantified and better understood. In 

addition, these models are computationally much more efficient than classic species-based models. For 10 

example, assuming two independent traits for the phytoplankton community, a continuous trait-based 

model only requires 1 (biomass) + 2x2 (trait mean and variance) = 5 tracers for the phytoplankton 

community, while a discrete species-based model requires 2x10 = 20 tracers if assuming ten discrete 

values in each trait dimension, which still provides only coarse trait resolution. Furthermore, this 

difference increases exponentially with trait dimension. 15 

Relatively few continuous trait-based models have been coupled with physics transport and 

validated against oceanic observations. Here we describe a new one-dimensional model, CITRATE 

1.0, built upon the classic nitrogen-phytoplankton-zooplankton-detritus (NPZD) model with a 

phytoplankton community represented using a continuous distribution of size, taken as a master trait 

(Fig. 1). In this way, not only total phytoplankton biomass, but also phytoplankton mean size and size 20 

variance are explicitly modeled. The distributions of other important functional traits are implicitly 

modeled via well-established scaling power laws. For the model to be implemented in the subarctic 

North Pacific, a well-known high nitrate low chlorophyll (HNLC) region, CITRATE also incorporates 

an iron limitation module. We optimized the model parameters against the extensive observational data 

at two contrasting stations (K2: 160 ºE, 47 ºN; S1: 145 ºE, 30ºN) in the North Pacific (Fig. 2a). The 25 

station K2 is located within the western subarctic North Pacific gyre and is characterized by low 

temperature, high nitrate, and high carbon export. Iron limitation on phytoplankton growth has been 

suggested at this station (Fujiki et al., 2014). The station S1 is located within the western subtropical 
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North Pacific and is characterized by high sea surface temperature, low levels of nitrate and carbon 

export efficiency (Matsumoto et al., 2016; Sasai et al., 2016; Wakita et al., 2016).  

In the following sections, we first describe the details of the model structure and the parameter 

optimization subroutine. Then we show the results of parameter optimization and modeled patterns of 

nutrients, phytoplankton biomass, mean size and size diversity. We also discuss the merits and 5 

limitations of the model and of the continuous trait-distribution approach. CITRATE 1.0 is intended to 

be a starting model for later incorporation into three-dimensional (3D) ocean circulation models and for 

further development of more comprehensive trait-based models.  

2 Model description 

For simplicity, we assume that phytoplankton size is the master trait that determines all 10 

physiological functions (Litchman et al., 2007; Finkel et al., 2010; Edwards et al., 2011, 2012, 2015). In 

addition to phytoplankton total biomass (P), we also include phytoplankton mean log size (𝒍, ln µm3) 

and log size variance (v, (ln µm3)2) as independent tracers in the model. We use the product of 𝑷𝒍 and 

𝑷𝟐𝒗, respectively, for the tracers of mean and variance involved in diffusion. Note that we prefer 𝑷𝟐𝒗  

over 𝑷𝒗 because we found that the use of 𝑷𝟐𝒗 slightly improved the model fitting. Because in certain 15 

parts of the North Pacific iron instead of nitrogen is the main limiting nutrient for phytoplankton growth 

(Fujiki et al., 2014), we also include dissolved iron (fer) as another independent tracer. Hence the model 

includes 7 tracers in total (Fig. 1).  

2.1 Continuous trait-based phytoplankton model 

Following the moment closure techniques in Merico et al. (2009, 2014), the differential equations 20 

for P, l, and v can be written as: 
!"
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≈ 𝑃 𝜇 𝑙 + !
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!!!
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where µ(l) is the phytoplankton growth rate (d–1) at mean size l, u is the trait diffusion parameter, Kv is 

the vertical eddy diffusivity (m2 s–1). Eqs. (1a-c) are approximations because the higher-order moments 

such as the skewness and kurtosis have been ignored and a Gaussian distribution needs to be assumed 

for l. The differential equations of 𝑃𝑙 and 𝑃!𝑣 follow: 
!(!!)
!"

= 𝑃 !!
!"
+ 𝑙 !"

!"
+ !

!"
𝐾!

!(!!)
!"

                                                                            (1d) 5 

!(!!!)
!"

= 𝑃! !"
!"
+ 2𝑃𝑣 !"

!"
+ !

!"
𝐾!

!(!!!)
!"

                                                                  (1e) 

Phytoplankton growth rate depends on temperature (T, K), light (I, W m–2), dissolved inorganic 

nitrogen (N, µmol L–1) and iron concentrations (fer, nmol L–1): 

𝜇 = 𝜇!
!

!!!!

!"#
!"#!!!"#

(1− 𝑒!
!!!
!!)                                                                        (2) 

in which µm is a function of T: 10 

𝜇! = 𝜇!! 𝑒
!!
!

!
!!
!!!                                                                                                   (3) 

The parameters µ’
m,  KN, Kfer, and αc are all dependent on cell size: 

𝜇!! = 𝜇!,!! 𝑒!!!!!!!!                                                                                             (4a) 

𝐾! = 𝐾!,!𝑒!!!                                                                                                     (4b) 

𝐾!"# = 𝐾!,!"#𝑒!!"#!                                                                                                (4c) 15 

𝛼! = 𝛼!,!𝑒!!!                                                                                                      (4d) 

Eq. (5a) follows that maximal phytoplankton growth rate is a unimodal function of phytoplankton size 

(Chen et al., 2010, 2011; Marañón et al., 2013).  

Following Flynn (2003), we are also able to directly estimate phytoplankton chlorophyll-to-carbon 

(θ) and nitrogen-to-carbon (QN) ratios directly from ambient light and nutrient levels: 20 

𝜃 = 𝜃!"# +
!
!!!

(𝜃!"# − 𝜃!"#)                                                                    (5a) 
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!!"#
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!
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where θmin and θmax are minimal and maximal Chl:C ratios, respectively. Qmin and Qmax are minimal and 

maximal N:C ratios, respectively. The total Chl a concentrations (Chl, µg L–1) and net primary 

production (NPP, µgC L–1 d–1) can be calculated as: 

𝐶ℎ𝑙 =  𝑃 !
!!
+ !

!

!! !
!!

!!!
!!!

                                                                       (5c) 

 5 

𝑁𝑃𝑃 =  𝑃 !
!!
+ !

!

!! !
!!

!!!
!!!

                                                                      (5d) 

2.2 General description of the 1D model (nutrient, zooplankton (Z), detritus (D), iron (fer), and 

light) 

The 1D model focuses on the upper 250 meters of the ocean. The vertical grid, a total of 30 layers, 

follows a stretched vertical coordinate with increasing resolution towards the sea surface (surface 10 

stretching parameter = 2.0), similar to that used in the Regional Ocean Modelling System (ROMS) 

(Shchepetkin and McWilliams, 2005). For computational efficiency, the 1D model contains only 

biological tracers. The physics variables are imported as external data (see Sect. 2.3 for details).  

For simplicity, phytoplankton cells are assumed not to excrete inorganic nitrogen or to have any 

natural mortality to be converted into detritus. We assume a generic zooplankton compartment that 15 

feeds only on phytoplankton following a Holling Type III functional response without any size-

dependent feeding preference: 

𝑍𝑜𝑜 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 =  𝑔!"#
!!

!!!!!
!                                                     (6) 

where gmax is the maximal zooplankton ingestion rate, KP is the half-saturation constant for 

zooplankton grazing.  20 

The total amount of phytoplankton ingested by zooplankton is divided among three fates: 

zooplankton net growth, excretion into the inorganic nitrogen pool, and defecation of unassimilated 
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food into the detritus pool (Buitenhuis et al., 2010). The mortality rate of zooplankton is set to be 

proportional to the squares of zooplankton biomass. The dynamics of zooplankton follow: 

!"
!"
=  𝑒

!!
!

!
!!
!!!  (𝑍𝑔!"#

!!

!!!!!
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!
!"

𝐾!
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!"

                             (7a) 

where Ez is the activation energy for heterotrophic processes. NGE is the net growth efficiency of 

zooplankton. mz is the zooplankton mortality coefficient. z is water depth (m). 5 

Detritus is converted to inorganic nitrogen at a rate (Rdn, d–1) that has the same temperature 

sensitivity with zooplankton grazing. Detritus is also assumed to have a constant sinking rate (Wd).  
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The dynamics of inorganic nutrients follow: 10 
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The dynamics of dissolved iron largely follow Aumont et al. (2003), Nikelsen et al. (2015), and 

the PlankTOM10 model (Buitenhuis et al., 2010):  
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(7d) 

To translate between nitrogen and iron in particles, a constant fer:N ratio (Rfer_N) of 0.0265 is 

assumed. Monthly atmospheric dust deposition data are extracted from Tegen and Fung (1995). 

Following the PlankTOM10 model, iron scavenging rate (ferscav) is composed of both background 20 

scavenging rate (kscm) and particle absorption rate (ksc): 
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𝑓𝑒𝑟!"#$ = 𝑘!"# + 𝑘!"𝐷𝑒
!!
!

!
!!
!!!

! !! !!"!!"# !!" ! !!"#!!"! !! !!"!!"# !!"
!

!!!"
                 (8a) 

where keq is the equilibrium constant between free iron and ligands and organic complexes: 

𝑘!" = 10 !".!"!!"#".!!                                                                                                                 (8b) 

 Note that T is in absolute temperature. lfe is the total iron ligand concentration that is assumed 

constant (0.6 nM).  5 

Light levels (Iz) at depth z were calculated based on PAR0 and Chl a concentrations following the 

Beer-Lambert law: 

𝐼! = 𝑃𝐴𝑅!𝑒
!! !!!!!!! !!! ! !"!

!                                                                                           (9) 

in which Kw and Kchl are the attenuation coefficients for seawater and Chl a, respectively. To 

realistically estimate the average light field that a phytoplankton cell should experience in a mixing 10 

water column (Franks, 2015), the ambient light level for phytoplankton within the surface mixed layer 

(ML) is calculated as the average light throughout the surface ML, which is defined as the deepest depth 

with Kv > 10–3 m2 s–1. This calculation is based on eq. (1) in Franks (2015), which gives that the average 

time for a phytoplankton cell to move 100 m at the local diffusivity of 10–3 m2 s–1 is roughly half a day. 

However, to compare with in situ NPP estimates that were calculated from incubation bottles without 15 

continuous mixing, phytoplankton µ, θ, and QN are recalculated from Iz based on the Beer-Lambert law. 

The initial condition of inorganic nitrogen is set to the vertical profile of nitrate in January of the 

World Ocean Atlas (WOA) 2013 monthly climatology. Initial phytoplankton, zooplankton, and detritus 

biomass are all set to 0.1 µmol L–1 in each grid. Initial phytoplankton mean log size (𝑙) and log size 

variance (v) are set to be 1. Initial dissolved iron concentration is set to the vertical profile of iron in 20 

January from a 3D global biogeochemical model output (Aumont et al., 2003). The time step of the 

model is 10 minutes. All the fixed model parameters are shown in Table 1 and the model parameters 

that are optimized to match observational data are shown in Table 2. 
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2.3 External physics data for one-dimensional (1D) model 

Four types of external physics forcing data were imported into the 1D model: vertical eddy diffusivity 

(Kv), surface photosynthetic available radiation (PAR0), atmospheric dust deposition, and vertical 

temperature profiles. Vertical advection of water was neglected, which had been shown relatively 

unimportant (Fernández-Castro et al., 2016). The most important physics forcing data, Kv, determined 5 

the upward nutrient flux to the upper euphotic zone and were imported from the output of a three 

dimensional (3D) eddy-permitting model targeted for North Pacific (Hashioka et al., 2009). This 3D 

model was able to faithfully simulate the Kuroshio Current and the spatial distributions of the Chl a 

fields. The extracted vertical profiles of Kv were also consistent with the in situ estimated mixed layer 

depths (MLD) at the two stations (Fig. 2). Practically, any reasonable outputs of seasonal Kv  profiles 10 

can be used. PAR0 were imported from SeaWIFS satellite monthly climatology products. Seasonal 

temperature vertical profiles were imported from WOA2013 monthly climatology.  

2.4 Delayed Rejection Adaptive Metropolis-Hasting Monte Carlo (DRAM) algorithm 

The DRAM algorithm, built upon the classic Metropolis-Hasting Monte Carlo (MHMC) algorithm, 

incorporates the merits of both adaptive and delayed-rejection MHMC algorithm to increase the 15 

acceptance rate and thus more efficiently find the target distribution of parameter values (Haario et al., 

2006; Laine, 2008). The adaptive component uses information from previous model runs to 

approximate the distribution of parameter values as a multivariate Gaussian, which it periodically 

updates as more simulations are conducted. Based on this, the algorithm alters the magnitude and 

direction of proposed ‘jumps’ in parameter space (i.e., the proposal covariance matrix (Pcvm)) in order to 20 

more efficiently explore the parameter space. Specifically, the Pcvm is tuned based on the covariance 

matrix (Cvm) of the already accepted parameter sets after a fixed number of iterations following Gelman 

et al. (2014) (i.e. Pcvm = Cvm • 2.42/d, where d is the dimension of the target parameter vector). 

 With the delayed rejection MCMC, when a newly proposed set of parameters is rejected, Pcvm is 

temporarily downscaled (to 1% of the original Pcvm in our case) and a second set of parameters is 25 

proposed based on the rejected parameters and the downscaled Pcvm. DRAM has the advantage of 

speeding up the mixing properties of MHMC and has been shown to better explore the parameter space 
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than some other algorithms such as the families of Simulated Annealing possibly due to the use of two-

stage proposal covariance matrices (Villagran et al., 2008). Compared with the widely used ensemble 

Kalman filter, DRAM is perhaps more suitable for the nonlinear ecosystems (Annan and Hargreaves, 

2007). 

Preliminary model runs suggested that from the third year, the model reached a quasi-steady state, 5 

exhibiting regular seasonal cycles under the climatological forcing (Fig. 3). As such, we ran the model 

for four years and the output of the final year was used for validation against observational data. The 

model outputs were linearly interpolated to the observational depths and both model. To allow fair 

comparisons among different data types and downplay the effects of extreme values, both the model 

outputs and observational data were transformed to their 1/4 power and normalized between 0 and 1 to 10 

achieve a quasi-normal distribution before calculating sum of squared errors (SSqE): 

𝑆𝑆𝑞𝐸!,! =
!!,!,!
!.!"!!!,!,!"#

!.!"

!!,!,!"#
!.!" !!!,!,!"#

!.!" −
!!,!,!
!.!"!!!,!,!"#

!.!"

!!,!,!"#
!.!" !!!,!,!"#

!.!"

!
!!,!
!!!                                                    (10) 

where SSqEk,i is the sum of squared errors of data type i at station k. nk,i is the number of observations 

for data type i at station k. ok,i,j is the observed jth value for data type i at station k.  ok,i,min and ok,i,max are 

minimal and maximal observed values for data type i at station k, respectively (Note that for all size-15 

fractions of Chl a, we intentionally set ok,i,min = 0 and ok,i,max = 1 to minimize the effects of the large 

measurement variability).  mk,i,j is the value linearly interpolated from model outputs to the same depth 

and date of ok,i,j.  

Following Laine (2008), the likelihood function for the eight types of observational data (total 

dissolved inorganic nitrogen (TIN), total Chl a concentration, NPP, particulate organic nitrogen (PON), 20 

and the fractions of four size-fractionated (> 10 µm, 3–10 µm, 1–3 µm, <1 µm) Chl a; Table 3) at two 

stations is calculated as: 

𝑝 = 2𝜋 !
!!,!
!!

!!! 𝜎!,!
!!!,!𝑒

!
!!"#!,!
!!!,!
!!

!!!                                                                   (11) 

in which σk,i is the standard deviation of the Gaussian errors of data type i at station k. 

Following Laine (2008), we assume that the prior of 1/σk,i follows a gamma distribution, with the 25 

prior mean as S0
2 and prior accuracy as n0. At each step the value of 1/σk,i is sampled from a conditional 
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gamma distribution Γ !!!!!,!
!

, !!!!
!!!!"#!,!
!

. The model parameters are assumed to follow multivariate 

normal distributions. The likelihood function contributed by the priors of the parameters is: 

𝑝!"# = 2𝜋 !
!!
! 𝜂!!!

!!
!!! 𝑒

!
!!!!!
!!

!!!
!!!                                                                        (12) 

in which np is the number of parameters to be estimated, γi and ηi are the prior estimates of the ith 

parameter and its standard deviation, respectively (Table 2). Values of ηi were calculated as one-sixth of 5 

the difference between the preset maximal and minimal parameter boundaries. θi is the current 

parameter value. The MCMC chain was run for an ensemble of 10000 simulations. 

2.5 Observational data 

The observational data including MLD and eight types of data used in DRAM (see Sect. 2.4) were 

obtained from the K2S1 project (https://ebcrpa.jamstec.go.jp/k2s1/en/index.html; Honda, 2016). The 10 

observations spanned from 2010 to 2013. All the data were pooled together to generate a quasi-

climatological seasonal pattern and inter-annual variations were treated as random noise. Part of the 

data have been published in Wakita et al. (2016), Fujiki et al. (2016), Matsumoto et al. (2016), and 

Sasai et al. (2016). To improve data coverage, we also included the nitrate data of World Ocean Atlas 

(WOA) 2013 for observed TIN. MLD was calculated as the first depth that the seawater density exceeds 15 

surface density by 0.125 kg m–3 (Shigemitsu et al., 2012). 

3 Results 

3.1 External physics forcing 

The validity of external physics forcing data, particularly vertical mixing that determines upward 

nutrient diffusive supply to the surface mixed layer, is essential for correct results and parameter 20 

optimization with the ecosystem model. Here we show in Fig. 2 a representative year of seasonal 

variations of Kv, temperature, surface PAR, and dust deposition. Vigorous winter mixing preceded 

summer water column stratification at both stations, with the model estimates of mixed layer depths 

consistent with those measured from in situ temperature and salinity profiles. Water temperatures and 

surface PAR values at the subarctic station K2 were significantly lower than at the subtropical station 25 
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S1. Compared to station S1, the station K2 was characterized by a pronounced spring peak of 

atmospheric dust deposition.    

3.2 Optimization efficiency and optimized parameter distributions 

As expected, the log-likelihood continued to increase with the number of model runs and reached a 

plateau after 2000 iterations (Fig. 4). Except that the SSqE of NPP and the largest size fraction (> 10 5 

µm) increased with time at S1, all the other model–data mismatches consistently decreased. Comparing 

the two stations, the model fits to the TIN, Chl, NPP and large size fractions (> 3 µm) of Chl were better 

at station K2 than S1. The model fits to the small size fractions (< 3 µm) were better at S1 than K2.    

Most values of the optimized parameters fell into reasonable ranges (Table 2; Fig. 5). For some of 

the parameters such as K0,N, Wd, α0,C, and K0,fer, the final optimized value differed substantially from 10 

initial estimates, an expected outcome of the algorithm striving to match with the eight different types 

of observations at both stations with contrasting environments. Note that the optimized u value was 

much higher than in Acevedo-Trejos et al. (2016), which might be a necessary condition to match with 

the observed distributions of size-fractionated chlorophyll. We also note that increasing u beyond some 

threshold (e.g. 0.2) could drive the model to unstable conditions in which the size variance kept 15 

increasing.  

3.3 Comparison between best model outputs and observation 

The best model outputs in terms of the highest likelihood could capture most of the observational 

patterns quantitatively (Figs. 6–9). At both stations, the model could reproduce the vertical increasing 

trend of TIN with depth and the higher concentrations of TIN during winter than summer and autumn. It 20 

is noteworthy that the model could also successfully reproduce the relatively abundant summer TIN 

concentrations at surface at station K2 due to the incorporation of iron limitation. At station S1, the 

depth of the nutricline seems to be underestimated, mostly related to the shallow mixed layer depth 

from spring to summer (Fig. 2b).  

The vertical and seasonal patterns of Chl a concentrations, including the deep chlorophyll 25 

maximum at the subtropical station S1, could also be well reproduced at both stations. The patterns of 

NPP at station K2 were also well reproduced. One noticeable problem at station S1 is that the surface 

peak of NPP during summer and fall could not be well reproduced, probably due to the lack of N2 
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fixation in the model that is expected to enhance NPP within the surface mixed layer. The model fits of 

PON were less satisfying at station K2, probably due to the use of a single parameter for the sinking 

velocity of detritus at both stations.  

Validation against observed phytoplankton size data is critical for testing CITRATE 1.0 in which 

phytoplankton size structure is the core component. The model could reproduce most patterns of the 5 

proportions of size-fractionated Chl at both stations (Figs. 8, 9). Although with some deviations, the 

model could show the relative dominance of larger sizes at K2 and smaller sizes at S1. At station S1, the 

model also reproduced the relatively invariant proportions of size-fractionated Chl with depth during 

stratified seasons. This is not expected because of a steep vertical gradient of TIN around 100 m, which 

was expected to enhance the growth of large phytoplankton. The relative constancy of phytoplankton 10 

size structure with depth suggests that large phytoplankton are more susceptible to light limitation as 

previously suggested (Finkel, 2001; Edwards et al., 2015). We also note some deficiencies of the model, 

including the overestimation of the 3~10 µm fractions at station K2. The model also tended to 

underestimate >10 µm fractions at station S1. All these problems relate to the assumption of a fixed trait 

distribution as discussed later. 15 

3.4 Modelled seasonal patterns of nutrients, phytoplankton biomass, mean size, and size diversity 

At both stations, TIN concentrations were higher during winter in the surface mixed layer due to 

more vigorous mixing (Figs. 10, 11). Significant drawdown of TIN occurred in surface water following 

water column stratification. At station K2, the patterns of dissolved iron concentration mirrored those of 

TIN, suggesting that the spring peak of dust deposition was counteracted by stimulated phytoplankton 20 

growth. By contrast, surface iron concentrations accumulated from late summer to fall due to nitrogen 

limitation at station S1.   

In accordance with the TIN patterns, higher concentrations of Chl a were found during winter at 

station S1, which results from both increased phytoplankton biomass and chlorophyll-to-carbon ratios 

(Fig. 11). Starting from spring to fall, subsurface maximal layers of Chl a formed and progressively 25 

deepened with time. By contrast, at station K2, Chl a concentrations peaked from spring to early 

summer and subsurface chlorophyll maximum layers were not evident even during the summer (Fig. 

10), suggesting light limitation played a stronger role in limiting phytoplankton growth at K2 than S1.  
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At both stations, in spite of the nutrient increases in winter, phytoplankton mean size peaked around 

spring. This is because wintertime conditions, with high nutrient concentrations, favour large sizes, and 

phytoplankton mean size continues to increase, i.e.  !" !
!"

 values are usually positive throughout the 

winter, until spring. Thus, the spring peak of mean size results from winter mixing that favours large 

size. This scenario is similar to the spring bloom cycles described by Behrenfeld (2010) that spring 5 

bloom is also a result of winter mixing that favours phytoplankton growth.  

Light also played a role in affecting size dynamics. At station S1, even though phytoplankton mean 

size also increased during winter, it increased most dramatically in early spring when light level 

increased and there were still nutrients left from winter mixing (Fig. 11e,h). The increases in light were 

contributed by both increases in surface PAR and shallower mixing. Nutrient (dissolved iron in the case 10 

of K2) depletion led to negative values of  !" !
!!

  since late spring or summer at both stations, resulting in 

the decrease in mean size. In general, the modelled mean sizes were significantly larger at station K2 

than S1, mainly due to less severe nutrient limitation.  

Modelled phytoplankton size variances largely followed the patterns of nutrients. Similar to mean 

size, size variance also increased from fall when mixing started to intensify. However, size variance 15 

decreased with nutrient depletion appreciably faster than mean size because the rate of change of size 

variance is a function of the square of size variance, while the rate of change of mean size is only a 

function of size variance (Eq. 1). This led to a temporal decoupling of mean size and size diversity. We 

also observed a temporal decoupling of µ and size variance. The growth rate µ peaked during spring and 

summer at S1 and K2, respectively, due to the improved light condition and high temperature. In other 20 

words, although spring or summer blooms can be characterized by high biomass, growth rate, and large 

size, the size diversity could be higher during winter.  

 

The values of !
!! !
!!!

, a surrogate for the intensity of competition, were always negative in all times at 

both stations, indicative of the effect of resource competition that reduces diversity. The values of !
!! !
!!!

 25 

were less negative in nutrient-replete wintertime and deep waters, suggesting that enhanced nutrient 

supply relieved the nutrient competition among phytoplankton species, providing a window for large 
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species to thrive, and thus increasing diversity. The absolute magnitude of !
!! !
!!!

 positively correlated to 

µ, indicating that higher growth rates induced greater resource competition. This agrees well with the 

“dynamic equilibrium theory” proposed by Huston (1979). 

The patterns of trait diffusion, calculated as the sum of all components containing u in the right side 

of Eq. (1c) to sustain diversity, mirrored those of growth rates. From late fall to early spring, because 5 

the values of !
!! !
!!!

 were less negative and trait diffusion estimates were also relatively high, 

phytoplankton size diversity kept increasing. With stratifying water column starting from spring, the 

values of !
!! !
!!!

 became more negative and trait diffusion became critically important for sustaining 

diversity in the system by counteracting the effect of competitive exclusion in nutrient depleted waters.     

 10 

4 Discussion 

4.1 Model merits 

The most important advantage of the continuous trait-based or the adaptive dynamics approach can 

be quoted from Bak (1996): “If, following traditional scientific methods, we concentrate on an accurate 

description of the details, we lose perspective” (p. 10) and also “It is a futile endeavour to try to explain 15 

most natural phenomena in detail by starting from particle physics and following the trajectories of all 

particles” (p. 5). We believe that this merit overweighs other technical advantages such as 

computational efficiency (Acevedo-Trejos et al., 2016) because the model equations themselves (Eq. 1) 

have already provided the genuine insights for the mechanisms regulating phytoplankton diversity, size 

structure and biomass. For example, the second derivative of the growth rate at mean size, !
!! !
!!!

, can be 20 

conveniently perceived as a proxy for the intensity of resource competition. In typical NPZD-type 

models in which phytoplankton species compete for the same set of nutrients but do not directly 

confront each other, the parameters representing the direct interactions among species (such as in the 

Lotka–Volterra equations) are usually not available. Thus, in traditional approaches that model the 

trajectories of a number of species, the competition is not easily quantifiable and therefore is rarely 25 
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quantified. The ability to easily quantify competition intensity makes it easy to test ecological theories 

such as Huston’s “general hypothesis of species diversity” (Huston, 1979).  

The set of Eq. 1 also provides an excellent platform to investigate the underlying mechanisms for 

the relationship between biodiversity and ecosystem functioning (productivity in this case), which have 

been extensively studied (Tilman et al., 2014). One insight from the results of the temporal decoupling 5 

of growth rate and size diversity on the seasonal scale is that productivity and diversity are not 

necessarily correlated because the productivity can strongly depend on current environmental condition, 

while diversity emerges over time, depending on standing stocks, which themselves are contingent upon 

historical events.   

The incorporation of trait diffusion originally developed for continuous trait-based models (Merico 10 

et al., 2014) also provides a mechanism similar to speciation for sustaining diversity, linking ecological 

and evolutionary processes (Rosenzweig, 1995). The increasing effect of trait diffusion with growth rate 

is consistent with evolutionary theory that metabolic rates, closely coupled with growth rates, are 

expected to correlate with speciation rates (Allen et al., 2006).  

By solving these theoretical differential equations under quasi-realistic ocean conditions, we can 15 

evaluate the relative roles of each mechanism that structures the community properties mentioned 

above. Although any model is necessarily an abstraction of the real world, to avoid being too far away 

from reality, we also considered realistic phytoplankton physiology and optimized model parameters 

guided by real data. For example, our model has incorporated some features of phytoplankton 

acclimatory plasticity such as variable Chl:C ratio and N:C ratio. Although, for the sake of simplicity, 20 

these variable ratios do not directly influence phytoplankton specific growth rate as in Geider et al. 

(1997), they are able to reproduce the high Chl:C ratios in the DCM layer, thus providing a more 

realistic mechanism for the formation of the DCM layer than the models with fixed ratios (Fennel and 

Boss, 2003). Similarly, the variable N:C ratio also allows phytoplankton cells to achieve higher carbon-

based NPP in surface waters than the models with fixed N:C ratios (Christian, 2005). Although cellular 25 

chlorophyll and nitrogen quota are not calculated as independent tracers, model comparisons suggest 

that more complex models do not yield better fits to the data (Flynn, 2003).  
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Compared to previous continuous trait-based models (Terseleer et al., 2014; Acevedo-Trejos et al., 

2015, 2016), CITRATE 1.0 does not impose a size-dependent feeding preference of zooplankton to 

affect the average size of phytoplankton. Instead, we employ an observation-based unimodal 

relationship between maximal growth rate and size to give the large phytoplankton the advantage under 

nutrient-replete conditions (Chen and Liu, 2010, 2011; Marañón et al., 2013), thus allowing a tradeoff 5 

between nutrient affinity and maximal growth rate. One reason is that, in the open ocean, such size-

dependent feeding preference is either very weak or does not have a robust pattern for the dominant 

grazers, microzooplankton (Hansen and Hansen, 1994; Chen et al., 2009, 2010). While previous studies 

usually assume that the specific clearance rates of zooplankton on phytoplankton decrease with 

increasing phytoplankton size, which is usually based on the copepod data, field dilution experiments 10 

often suggest that the grazing rates of microzooplankton are higher on fast-growing diatoms (Latasa et 

al., 1997; Zhou et al., 2015). Because our model incorporates a generic zooplankton compartment, 

which should have an adaptive feeding behaviour on phytoplankton (Behrenfeld and Boss, 2014), we 

feel that it is justifiable not to apply any size-related feeding preference in CITRATE 1.0. Thus, 

phytoplankton mean size and size diversity are controlled only by bottom-up factors, although 15 

zooplankton grazing plays an indirect role in affecting nutrient regeneration and phytoplankton 

mortality. Whether or not size-dependent zooplankton grazing plays an important role in determining 

patterns of phytoplankton mean size and size diversity (Terseleer et al., 2014) deserves to be further 

investigated in future work. 

 20 

4.2 Model limitations 

4.2.1 Assumption of trait distribution 

To facilitate calculation of trait moments, a certain distribution has to be assumed for the trait (Merico 

et al. 2009; 2014). A lognormal distribution is usually appropriate for phytoplankton size (Finkel, 2007; 

Terseleer et al., 2014; Smith et al., 2016). However, this does not guarantee that a fixed type of 25 

probability distribution can hold for all situations (Coutinho et al., 2016). In oligotrophic waters where 

picophytoplankton, particularly the unicellular cyanobacteria Prochlorococcus and Synechococcus, 

dominate (Campbell et al., 1994; Liu et al., 1997), the distribution of phytoplankton log size is more 
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likely right skewed. In other words, abundances of large species are higher than expected from a pure 

lognormal distribution, which is consistent with the observation that some large diatoms, with 

significant contributions to new production, can be found in the oligotrophic gyres (Villareal et al., 

1999). This is probably one of the major reason that our model tends to underestimate the fraction of > 

10 µm size. This is an inevitable consequence of aggregating the description of the entire community 5 

into only the three descriptors (i.e. total biomass, mean and variance), which reduces the degrees of 

freedom, thus sacrificing detailed accuracy for generality and perspective. 

One remedy for this problem might be to assign more functional groups in phytoplankton and 

assume a lognormal distribution for each group (Terseleer et al., 2014). Having a number of functional 

groups also circumvents the problem of size-independent functional differences among phytoplankton, 10 

such as the differences of maximal growth rates between diatoms and dinoflagellates that may have 

similar sizes (Chen and Laws, 2017). 

4.2.2 Transport of moments 

Another potential problem is the transport of trait moments in ocean circulation models. Unlike 

nutrients or plankton biomass, trait moments are not “concentrations” that can be directly involved in 15 

advection and diffusion. The immediate summation of two Gaussian curves with different areas 

(representing the total biomass), mean, and variance is certainly not another perfect Gaussian curve. 

However, if we consider that during one short time step, the intruded biomass of the external 

community from an adjacent grid represents only a minor fraction of the local community, then we can 

use the products of the biomass and the moments such as 𝑷𝒍 and 𝑷𝟐𝒗 as tracers being transported as 20 

other normal tracers to approximate the moments of the mixed community. This approach has already 

been suggested by Norberg (2004). A schematic diagram is shown in Fig. 12 to represent one example 

of such approximation, which seems to work well to the first order. Our tentative conclusion is that this 

approximation should work well in most cases and may potentially be a concern only under the 

presence of large gradients of phytoplankton biomass or trait moments.  25 

4.2.3 Lack of multiple traits 

As a first step, we incorporated only size as the master trait that affects all physiological functions of 

phytoplankton. In reality, many phytoplankton functional traits, such as optimal temperature, N2 
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fixation, and mixotrophy, are independent of size. For example, the optimal growth temperature of 

phytoplankton is closely related to environmental temperature, but only weakly relates to size (Thomas 

et al., 2012; Chen, 2015). The optimal growth temperature and irradiances are certainly function traits 

that deserve to be incorporated into trait-based models (Follows et al., 2007; Norberg, 2004; Edwards et 

al., 2015) and are expected to strongly affect phytoplankton functional identity and diversity at large 5 

scales.  

4.2.4 Difficulty in modelling surface peaks of NPP at station S1 

The near-surface peak of NPP at the oligotrophic station S1 during summer is not expected if we 

assume that the source of nutrients comes from below the euphotic zone. Even if variable N:C ratios are 

used in the model to allow more carbon to be fixed given the same amount of nitrogen near surface 10 

waters, surface NPP is still likely to be underestimated even with the presence of N2 fixation because of 

phosphorus limitation (Christian, 2005). It is possible that other mechanisms such as vertical migration 

of phytoplankton need to be taken into account (Villareal et al., 1999; Chavez et al., 2012). Therefore, 

this problem is not only restricted to CITRATE 1.0.   

4.2.5 Deficiency of the external physics driver 15 

We note that various aspects of the external environmental drivers such as vertical mixing 

coefficients (Kv) and iron deposition rates may still have some deficiencies that can bias model results 

and parameter optimization. For example, it is puzzling that although the MLDs derived from Kv 

seemed consistent with in situ temperature and salinity profiles (Fig. 2b), they were usually shallower 

than the observed nutricline from spring to fall at station S1. It is also possible that this problem arose 20 

because certain aspects of phytoplankton biology such as the varying adaptive response to light (Moore 

et al., 1998) were not included in the model. For example, we expect that including another functional 

group adapted to low light environments would deepen the nutricline.  

4.3 Future directions 

Considering the above limitations, one future direction is to increase the number of traits in the 25 

model to generate more realistic phytoplankton diversity patterns, which requires both an “envelope” 

function relating the maximal growth rate with the optimal trait value and a relationship between growth 

rate and trait value for each species (Norberg, 2004). Another refinement as noted above is to model 
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each functional group with a continuous trait-based model, thus mixing the continuous trait-distribution 

and discrete trait approaches to better capture trait distributions that deviate from normality.  

It is relatively easy to couple the one-dimensional CITRATE model with 3D global or regional 

ocean models, thus providing a means to model the large-scale patterns of phytoplankton size and 

diversity. In particular, by including both trait diffusion and competitive exclusion it may be possible to 5 

begin to untangle the relative roles of ecological versus evolutionary processes in shaping global 

phytoplankton diversity patterns.   

 

5. Conclusions 

Ø We present a 1D model with continuous size distribution for phytoplankton (CITRATE). The 10 

dynamics of phytoplankton mean size and size variance are directly linked to environmental 

factors and moments of the size distribution in Eq. (1), facilitating understanding of the underlying 

mechanisms controlling phytoplankton size and diversity. CITRATE 1.0 also incorporates “trait 

diffusion” as an eco-evolutionary process to sustain phytoplankton diversity. 

Ø We optimized the parameters of CITRATE using the DRAM algorithm, which revealed that the 15 

model can faithfully reproduce observed seasonal patterns of inorganic nitrogen, Chl a, and 

phytoplankton size structure. The model structure and associated parameters obtained herein can 

be useful for 3D regional and global ocean models. 

Ø The shortcomings of CITRATE include its assumption of a lognormal distribution for 

phytoplankton size, which to some extent limits the precision with which it can reproduce large 20 

size classes of phytoplankton. 

Ø Future continuous trait-based models can be built on CITRATE 1.0 to reproduce more realistic 

patterns of phytoplankton diversity, for example by accounting for multi-dimensional trait 

distributions. 

 25 

6. Code and data availability 

The code and data of CITRATE 1.0 are freely available at: 

https://github.com/BingzhangChen/NPZDFeCONT.  

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-104
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 June 2017
c© Author(s) 2017. CC BY 3.0 License.



22 
 

6.1 General instruction 

The code for CITRATE 1.0 is written in Fortran90 with the Intel Fortran compiler used. The 

running environment is Linux or Unix. The user is supposed to be familiar with the Fortran language.  

For each station, four different physical forcing data including vertical profiles of eddy diffusive 

coefficients and temperatures, surface PAR and atmospheric dust deposition. We already provided the 5 

relevant data for stations S1 and K2. The temporal resolution is one day for the vertical eddy diffusivity 

and one month for three other types of data.  

After downloading the folder FlexEFT1D, go to the directory 

FlexEFT1D/DRAM_0.9/NPZDcont/BOTH and type vi run. The user can change the value of Test inside 

the bash script run. The Test value being 0 means a fast run, usually for a formal model run for a large 10 

number of iterations. The Test value being 1 means running a model for debugging, which is much 

slower than the fast run. The user can also modify the compiler flags depending on the purpose in the 

script. Having chosen the right compiler option, type ./run, the model will compile and an executable 

file (NPZDCONT) will be generated.  

The next step is to type vi Model.nml, the file containing two namelists. The namelist &Model 15 

contains the options for station names, the type of ecological model, the type of nutrient uptake function 

(1 only for CITRATE), and the type for grazing function (four different grazing functions including the 

three Holling type functions and the Ivlev function). The station name determines the right physics files 

to be read and the filenames for model output. For now we only allow three possible stations: S1, K2, 

and HOT. Other station names will generate an error. If the user wants to add more station names, the 20 

subroutine Setup_OBSdata within MOD_1D.f90 is the place to be modified. A number of ecological 

models besides CITRATE have been developed. It is beyond the scope of the present study to describe 

all of them in detail. Just note that the model lists are in the fortran file bio_MOD.f90 and some other 

details are in choose_model.f90 and MOD_1D.f90.  

The namelist &MCMCrun contains the options for defining the total length of the MCMC chain 25 

which is at least 2, the number of the ensemble runs, the number of days for each model run, whether 

the model should start from previous runs (Readfile = 1) or start a new run (Readfile = 0), and the 

number of runs in the historical files (enssig and enspar).   
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After defining all the model settings, type “./NPZDCONT” and then the model will run and some 

outputs will be shown on the screen. Type “./NPZDCONT > out” to make the model outputs stored in 

the “out” file.  

For each model run, the model saves the current parameters into the “enspar” file and the current 

values of σ and SSqE into the  ‘enssig’ file. In this way, even if the model crashes, the user can pick up 5 

the current parameter position and updated parameter covariance matrix. The model also generates the 

files of best parameters, best σ and SSqE files, best model output files that correspond to observational 

data, and model output files at daily resolution at each grid after an ensemble run. 

6.2 Code structure 

All the source files including the makefile are stored in the src folder. Here we briefly describe the 10 

functions of the most important source files: 

Ø Main.f90: The main program for DRAM that calls each subroutine in serial. 

 

Ø MOD_1D.f90: The major module that sets up and runs the 1D model. The module also generates 

model output that matches with the observational data. 15 

 

Ø Interface_MOD.f90: the module that initializes the absolute and normalized parameter vectors, the 

covariance matrix of the parameters, the prior parameter values, and the upper and lower parameter 

boundaries.  

 20 

Ø SUB_MOD.f90: the module that calculates sum of squared errors (SSqE) between model outputs 

and observational data. This module also contains the I/O subroutines that save the parameters, σ, 

and SSqE for each iteration. It also contains the major subroutine MCMC_adapt that determines 

whether to accept new parameters, updates covariance matrix, proposes new parameter vectors and 

calls the subroutine that runs the 1D model with the newly proposed parameters. 25 

 

Ø choose_model.f90: the subroutine that defines the number and indices of tracers and the model 

outputs that need to be written into the output file. 
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Ø NPZD_cont.f90: the major biological subroutine for the CITRATE model.  

 

Ø bio_MOD.f90: the module that declares most of the model names, indices for model input and 

output variables and parameters.  5 
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Table 1. Fixed parameters including units and values of the CITRATE 1.0 model. 

Symbol Description Value Unit 

Kw Light attenuation coefficient of seawater 0.04a m–1 

Kchl Light attenuation coefficient of chlorophyll 0.025a (mg Chl a m2) –1  

Ep Activation energy of phytoplankton rates 0.5b eV 

Ez Activation energy of heterotrophic rates 0.6b eV 

θmin Minimal chlorophyll-to-carbon ratio 0.02c gChl molC–1 

θmax Maximal chlorophyll-to-carbon ratio 0.5 gChl molC–1 

unass Fraction of unassimilated food by zooplankton 0.24d dimensionless 

NGE Net growth efficiency of zooplankton 0.3d dimensionless 

Kp Grazing half-saturation constant of zooplankton 0.5e µM N 

Rdn Conversion rate of detritus to inorganic nitrogen 0.1 d–1 

lfe  Total iron ligand concentration 0.6 d nM 

Kscm Minimal iron scavenging rate 3 x 10–5 d d–1 

Ksc Particle dependent scavenging rate 0.03d (µM N)–1 d–1 

RFe_N Plankton iron-to-nitrogen ratio 0.0265 nM:µM 

aFennel et al. (2006); bChen and Laws (2017); cFlynn (2003); dBuitenhuis et al. (2010); eChai et al. (2002). 
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Table 2. Parameters optimized by the DRAM algorithm. The values inside the parentheses of the initial 

values indicate the “hard” boundaries for the parameters. The numbers inside the parentheses of the 

optimized values indicate the standard deviation after the “burn-in” period (2000 iterations) has been 

removed. 

Symbol Description Initial Optimized Unit 

Wd Sinking rate of detritus 1 (0.01, 10) 3.3 (0.3) m d–1 

Q0N Phytoplankton minimal N:C ratio 0.076a (0.05, 0.13) 0.093 (0.0007) mol: mol 

gmax Maximal zooplankton grazing rate at 15 ºC 1 (0.5, 2) 0.90 (0.024) d–1 

mz Coefficient of mortality rate of zooplankton 0.1 (0.05, 0.3) 0.094 (0.002) (µM N)–1 d–1 

α0,c Initial slope of photosynthesis versus light at 1 µm3 0.055b (0.01, 0.1) 0.019 (0.0013) (W m–2)–1 d–1 

αI Size scaling exponent for αc 0.08 (–0.3, 0.2) 0.097 (0.0017) dimensionless 

K0,N Growth half-saturation constant for nitrogen for a 

phytoplankton cell of 1 µm3 

0.5 (0.001, 3)  0.89 (0.01) µM N 

αK Size scaling exponent for KN 0.27c (0.1, 0.3) 0.24 (0.001) dimensionless 

𝜇!,!!  Phytoplankton maximal growth rate at 1 µm3 at 15 ºC 1.2d (0.3, 3) 1.34 (0.018) d–1 

αµ First-order size scaling component for µm 0.25e (0.1, 0.4) 0.27 (0.005) dimensionless 

ßµ Second-order size scaling component for µm –0.025e (–0.05, 0) –0.013 (0.0002) dimensionless 

K0,fer Growth half-saturation constant for iron of phytoplankton 

with 1 µm3 

0.08f (0.04, 0.2) 0.058 (0.001) nM Fe 

αfer Size scaling exponent for K0,fer 0.27c (0.1, 0.3) 0.30 (0.001) dimensionless 

u Trait diffusion parameter 0.08g (0.01, 0.12) 0.092 (0.0016) dimensionless 

dustso Dust iron solubility 0.02h (0.01, 0.05) 0.022 (0.0007) dimensionless 

aMarañón et al., (2013); bFennel et al., (2006); cWard et al., (2012); dFlynn et al., (2016); eChen and Liu, 5 

(2010); fGregg et al., (2003); gMerico et al., (2014); hAumont et al., (2003). 
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Table 3. Observational data at stations S1 and K2. N: number of observations. Min and Max are 

minimal and maximal values used in data normalization (see Sect. 2.4 for details). TIN: dissolved 

inorganic nitrogen (µmol L–1). Chl a: total chlorophyll a concentration (µg L–1). NPP: net primary 

production measured by 13C uptake (µgC L–1 d–1). PON: particulate organic nitrogen (µmol L–1).  SF 

Chl: percentages of four size fractionated Chl a. 5 

 

  K2   S1  

Type N Min Max N Min Max 

TIN 974 4.1 45.7 902 0 11.2 

Chl a 470 0 3.4 426 0 1.0 

NPP 112 0.1 37.1 128 0.1 34.9 

PON 29 0.1 2.2 32 0.1 1.0 

SF Chl 143 x 4 0 1.0 166 x 4 0 1.0 
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Figure captions 

Fig. 1. Schematic description of the CITRATE model. Thick arrows indicate nitrogen flows and dashed 

lines indicate the simplified iron cycle.  

Fig. 2. (a) Locations of the two stations, K2 and S1, overlaid on annual Chl a climatology of the North 5 

Pacific. (b-e) Seasonal forcing of vertical eddy diffusivity (Kv), temperature, surface PAR, and 

atmospheric dust deposition, respectively, at station S1. (d-i) The same as (b-e), but for station 

K2.  

Fig. 3. An example of modelled patterns of total inorganic nitrogen (TIN), Chl a (Chl), mean size, and 

ln size variance for four years at stations K2 (a-d) and S1 (e-h).  10 

Fig. 4. (a) Time evolution of log-likelihoods of the MHMC chain. (b-i) Time evolution of sum of 

squared errors (SSqE) for TIN, Chl, net primary production (NPP), particulate organic nitrogen 

(PON), and fractions of size-fractionated Chl a concentrations of > 10 µm (P10), 3–10 µm (P03), 

1–3 µm (P01), and <1 µm (P_1). (j-q) The same as (b-j), but for station S1. 

Fig. 5. Time evolution of fitted model parameters. 15 

Fig. 6. Model fittings to vertical profiles of TIN, CHL, NPP, and PON at four seasons at station K2. 

Black dots represent observational data and red thick solid lines represent the averaged seasonal 

values predicted by the model. Thin dashed lines represent 95% percentiles of the seasonal data. 

Fig. 7. The same as Fig. 6, but for station S1. 

Fig. 8. Model fittings for the percentages of the four size fractions of Chl a at station K2. 20 

Fig. 9. The same as Fig. 8, but for station S1.   

Fig. 10. Modelled seasonal patterns at station K2: (a) TIN, (b) dissolved iron, (c) Chl a, (d) 

phytoplankton biomass in terms of nitrogen (PHY), (e) phytoplankton mean size, (f) ln size 

variances, (g) community-based specific growth rate, (h) first derivative of phytoplankton 

growth rate against ln size evaluated at mean size, (i) second derivative of phytoplankton growth 25 

rate evaluated at mean size, and (j) trait diffusion effects. 

Fig. 11. The same as Fig. 10, but for station S1. 
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Fig. 12. A schematic diagram for the transport of phytoplankton mean size of two idealized 

communities, each having a lognormal size distribution. The hypothetical biomass, log mean 

size, and log size variance are 1, 5, 1 for community A, and 0.2, 4, 0.8 for B, respectively.  
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